16
Thu, Aug

Parker Showcases KleenVent line of Closed-Loop Cooling System Add-on Solution for 1.5MW Wind Turbines

Industry Insights
Typography

The product is targeted at owners of 1.5MW windturbines that use an open-loop water-glycol based IGBT cooling system.  Warm atmospheric  temperatures - lead to water evaporation from the open-loop coolant mix.  The system has to be regularly monitored and serviced  for replenishing and rebalancing of fluid, resulting in costly wind turbine and transformer power down. In addition, when the system is not promptly serviced, the resulting mix imbalance inhibits the cooling properties of the fluid and can potentially compromise the IGBTs, sometimes requiring their replacement. Parker's custom designed KleenVent solution helps optimize wind turbines operation and eliminate maintenance downtime previously required to restore cooling fluid mix levels, by closing the loop on the "open loop" cooling system.   KleenVent effectively eliminates water evaporation by containing the water vapor in a closed loop add-on system, and condensing it back into a liquid to maintain a constant water-glycol ratio maintenance to optimize the cooling systems efficiencies.

Cost savings of KleenVent implementation in 1.5 MW wind turbines with open loop cooling systems

As owners and operators are spending budgets and time maintaining IGBT coolant levels in open-atmosphere cooling systems, the overall cost of maintenance, replacement fluids and reduced reliability adds up quickly. The results of implementing the KleenVent solution, are reduced monitoring and improved turbine uptime and reliability – which net higher productivity and uninterrupted power generation and revenue streams.

Return on investment for the KV-CEI can be measured in as little as a  few short weeks in warmer climates and at elevated operating temperatures, meaning a quick investment in the Parker KleenVent solution can provide breakeven expenditures by summer’s end, along with continued productivity savings for the life of the turbine.

KleenVent KV-CEI technology  -- how the product works

The KleenVent KV-CEI is part of a larger family of products designed to isolate hydraulic systems from airborne contaminants, dust, chemicals and water vapor evaporation. The KV-CEI enclosure solution works by closing off the coolant loop system from the outside atmosphere with a breather bladder. This bladder allows the outside air to inflate and deflate the bladder as fluid levels inside the isolation tank expand and contract due to system liquid temperature changes. A low-pressure relief valve helps prevent system over-pressurization in case of unforeseen air trapped inside the fluid lines, and an open-close air exhausting valve allows the system to be drained and refilled quickly with the proper fluid levels during a normal preventative maintenance cycle. The current KV-CEI design is versatile enough to allow the addition of low-level liquid sensors when needed. We also can design many mounting options designed to fit a particular mounting pattern.  Currently the KV-CEI technology is deployed in wind turbine systems for one of the world's leading wind turbine manufacturers.

The new Parker KV-CEI reservoir bladder barrier creates a closed atmosphere that expands and contracts with temperature- and atmospheric pressure-induced changes. Isolating the internal volume of the reservoir from the existing outside atmosphere prevents both evaporation of water from and the ingress of airborne contaminants into the water-glycol solution. A check valve provides over pressure protection, and a visual level indicator allows local confirmation of the coolant level. An additional port is included to accommodate an optional, industry-standard, liquid-level float switch for remote low-level coolant indication.